บทกลับของทฤษฎีบทปีทาโกรัส
โดยกล่าวไว้ดังนี้
กำหนด a, b และ c เป็นจำนวนจริงบวกที่

ชุดของสามจำนวนนี้เรียกว่า สามสิ่งอันดับพีทาโกรัส อีกข้อความหนึ่งกล่าวว่า
สำหรับสามเหลี่ยมใด ๆ ที่มีด้าน a, b และ c ถ้า

บทกลับนี้ยังปรากฏอยู่ในหนังสือ Euclid's Elements ของ ยุคลิดด้วย
ถ้าในสามเหลี่ยมรูปหนึ่ง สี่เหลี่ยมบนด้านหนึ่งเท่ากับผลรวมของสี่เหลี่ยมบนอีกสองด้านที่เหลือของสามเหลี่ยมแล้ว แล้วมุมที่รองรับด้านทั้งสองที่เหลือของสามเหลี่ยมนั้นจะเป็นมุมฉาก
บทกลับนี้สามารถพิสูจน์ได้โดยใช้ กฎของโคไซน์ หรือตามการพิสูจน์ดังต่อไปนี้
กำหนดสามเหลี่ยม ABC มีด้านสามด้านที่มีความยาว a,b และ c และ

จากบทพิสูจน์ของบทกลับของทฤษฎีบทปีทาโกรัส เราสามารถนำไปหาว่ารูปสามเหลี่ยมใด ๆ เป็นสามเหลี่ยมมุมแหลม, มุมฉาก หรือ มุมป้าน ได้ เมื่อกำหนดให้ c เป็นความยาวของด้านที่ยาวที่สุดในรูปสามเหลี่ยม
ถ้า

ถ้า

ถ้า

ไม่มีความคิดเห็น:
แสดงความคิดเห็น